An example of a capacity for which all positive Borel sets are thick

Michał Morayne, Szymon Żeberski Wrocław University of Technology

Winter School in Abstract Analysis 2016 section Set Theory & Topology Jan 3 - Feb 6, 2016

Definition of Choquet's \mathcal{E} -capacity on E

Let $\mathcal{E} \subseteq P(E)$ be any lattice, $\emptyset \in \mathcal{E}$. Choquet's \mathcal{E} -capacity on E is any function $c : P(E) \to [-\infty, \infty]$ such that:

- i. $A \subseteq B \subseteq E$ implies $c(A) \leq c(B)$;
- ii. if $A_1 \subseteq A_2 \subseteq \ldots$ is any ascending sequence of subsets of E, then $\lim_{n\to\infty} c(A_n) = c(\bigcup_{n=1}^{\infty} A_n)$;
- iii. if $E_1 \supseteq E_2 \supseteq \ldots$ is any descending sequence of subsets from \mathcal{E} , then $\lim_{n\to\infty} c(E_n) = c(\bigcap_{n=1}^{\infty} E_n)$.

Choquet's capacitability theorem

For any set *B* from the σ - δ -lattice $\hat{\mathcal{E}}$ (a family closed under countable unions and countable intersections) generated by the family \mathcal{E}

the capacity of B can be approximated from below by capacities of subsets of B which are elements of \mathcal{E} .

Choquet's capacitability theorem

For any set *B* from the σ - δ -lattice $\hat{\mathcal{E}}$ (a family closed under countable unions and countable intersections) generated by the family \mathcal{E}

the capacity of B can be approximated from below by capacities of subsets of B which are elements of \mathcal{E} .

Definition of a thick set

 $B \subseteq \hat{\mathcal{E}}$ is called thick (with respect to a capacity c) if it contains uncountably many pairwise disjoint elements from $\hat{\mathcal{E}}$ of positive capacity c

Examples of capacity

►
$$X = \mathbb{R}, \ \lambda^* : P(\mathbb{R}) \to [0, \infty]$$

Examples of capacity

X is a Cantor cube, $\mathcal{K}(X)$ is the family of all compact subsets of X, If $\mathcal{E} = \mathcal{K}(X)$ then $\hat{\mathcal{E}} = \mathcal{B}(X)$ is the family of all Borel subsets of X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

X is a Cantor cube, $\mathcal{K}(X)$ is the family of all compact subsets of X, If $\mathcal{E} = \mathcal{K}(X)$ then $\hat{\mathcal{E}} = \mathcal{B}(X)$ is the family of all Borel subsets of X.

We construct an example of a $\mathcal{K}(X)$ -capacity such that all Borel sets of positive capacity are thick.

Construction of a capacity

 μ - the standard probabilistic product measure on X $\Lambda_1, \Lambda_2, \ldots$ - a sequence of pairwise disjoint infinite subsets of \mathbb{N} . $\Lambda_i = \{n_{i,j} : j \in \mathbb{N}\}$, where j < k implies $n_{i,j} < n_{i,j}$.

Construction of a capacity

 μ - the standard probabilistic product measure on X $\Lambda_1, \Lambda_2, \ldots$ - a sequence of pairwise disjoint infinite subsets of \mathbb{N} . $\Lambda_i = \{n_{i,j} : j \in \mathbb{N}\}$, where j < k implies $n_{i,j} < n_{i,j}$. We will now define a family of perfect subsets of X, $\{C(\xi^{(1)}, \ldots, \xi^{(n)}) : \xi^{(1)}, \ldots, \xi^{(n)} \in \{0, 1\}^{\mathbb{N}}, n \in \mathbb{N}\}$. Let $C(\emptyset) = X$. For $\xi^{(1)}, \ldots, \xi^{(n)} \in \{0, 1\}^{\mathbb{N}}$ we define $C(\xi^{(1)}, \ldots, \xi^{(n)})$ as

$$C(\xi^{(1)},\ldots,\xi^{(n)})=\prod_{k\in\mathbb{N}}D_k,$$

where $D_k = \{\xi_j^{(i)}\}$ if $k = n_{i,j} \in \Lambda_i$, $i \le n$, and $D_k = \{0, 1\}$ if $k \notin \bigcup_{i \le n} \Lambda_i$. Let

$$\nu_{\xi^{(1)},\ldots,\xi^{(n)}} = \prod_{k \notin \bigcup_{i \le n} \Lambda_i} \eta.$$

Let
$$A \subseteq C(\xi^{(1)}, \dots, \xi^{(n)})$$
. Then A is of the form $A = \prod_{i \leq n, j \in \mathbb{N}} \{\xi_j^{(i)}\} imes \pi_{X_n}(A),$

where

$$X_n = \prod_{k \notin \bigcup_{i \leq n} \Lambda_i} \{0, 1\}$$
 and $\pi_{X_n} : X \to X_n$ is a projection.

Let $A \subseteq C(\xi^{(1)}, \dots, \xi^{(n)})$ be a Borel set. Let

$$\mu_{\xi^{(1)},\ldots,\xi^{(n)}}(A) = \nu_{\xi^{(1)},\ldots,\xi^{(n)}}(\pi_{X_n}(A)).$$

$\mu_{\xi^{(1)},...,\xi^{(n)}} \text{ is a Borel measure on } C(\xi^{(1)},...,\xi^{(n)}). \text{ For } A \subseteq X \text{ let}$ $c(A) = \sup \left\{ \frac{1}{n} \mu_{\xi^{(1)},...,\xi^{(n)}}^* (A \cap C(\xi^{(1)},...,\xi^{(n)})) : \\ \xi^{(1)},...,\xi^{(n)} \in \{0,1\}^{\mathbb{N}}, n \in \mathbb{N} \right\}.$

$$c(A) = \sup \left\{ \frac{1}{n} \mu_{\xi^{(1)}, \dots, \xi^{(n)}}^* (A \cap C(\xi^{(1)}, \dots, \xi^{(n)})) : \\ \xi^{(1)}, \dots, \xi^{(n)} \in \{0, 1\}^{\mathbb{N}}, n \in \mathbb{N} \right\}.$$

Main Theorem

The function $c: P(X) \rightarrow [0,1]$ is non-negative Choquet's $\mathcal{K}(X)$ -capacity and if c(B) > 0, for a Borel subset B of X, then B contains continuuum many pairwise disjoint Borel subsets of positive capacity.

• $A \subseteq B \subseteq X$ implies $c(A) \leq c(B)$.

•
$$A \subseteq B \subseteq X$$
 implies $c(A) \leq c(B)$.

▶ For $K_1 \supseteq K_2 \supseteq \ldots$ a sequence of compact subsets of *X*

$$c(\bigcap_{n=1}^{\infty}K_n)\leq \lim_{n\to\infty}c(K_n).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$A \subseteq B \subseteq X$$
 implies $c(A) \leq c(B)$.

▶ For $K_1 \supseteq K_2 \supseteq \ldots$ a sequence of compact subsets of *X*

$$c(\bigcap_{n=1}^{\infty}K_n)\leq \lim_{n\to\infty}c(K_n).$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• If $\lim_{n\to\infty} c(K_n) = 0$ we have $c(\bigcap_{n=1}^{\infty} K_n) = \lim_{n\to\infty} c(K_n)$.

•
$$A \subseteq B \subseteq X$$
 implies $c(A) \leq c(B)$.

▶ For $K_1 \supseteq K_2 \supseteq \ldots$ a sequence of compact subsets of *X*

$$c(\bigcap_{n=1}^{\infty}K_n)\leq \lim_{n\to\infty}c(K_n).$$

- If $\lim_{n\to\infty} c(K_n) = 0$ we have $c(\bigcap_{n=1}^{\infty} K_n) = \lim_{n\to\infty} c(K_n)$.
- ▶ If $\lim_{n\to\infty} c(K_n) > 0$, then there exists $m \in \mathbb{N}$ such that

$$\lim_{n \to \infty} \frac{1}{m} \mu_{\xi^{(1,n)}, \dots, \xi^{(m,n)}} (K_n \cap C(\xi^{(1,n)}, \dots, \xi^{(m,n)})) = \lim_{n \to \infty} c(K_n),$$

for some $\xi^{(1,n)}, \dots, \xi^{(m,n)} \in \{0,1\}^{\mathbb{N}}.$

▶ If $\lim_{n\to\infty} c(K_n) > 0$, then there exists $m \in \mathbb{N}$ such that

$$\lim_{n\to\infty}\frac{1}{m}\mu_{\xi^{(1,n)},\ldots,\xi^{(m,n)}}(K_n\cap C(\xi^{(1,n)},\ldots,\xi^{(m,n)}))=\lim_{n\to\infty}c(K_n),$$

for some $\xi^{(1,n)}, \dots, \xi^{(m,n)} \in \{0,1\}^{\mathbb{N}}$.

Passing, if necessary, to a subsequence, we can assume that

$$\lim_{n \to \infty} (\xi^{(1,n)}, \dots, \xi^{(m,n)}) = (\xi^{(1)}, \dots, \xi^{(m)}).$$

▶ If $\lim_{n\to\infty} c(K_n) > 0$, then there exists $m \in \mathbb{N}$ such that

$$\lim_{n\to\infty}\frac{1}{m}\mu_{\xi^{(1,n)},\ldots,\xi^{(m,n)}}(K_n\cap C(\xi^{(1,n)},\ldots,\xi^{(m,n)}))=\lim_{n\to\infty}c(K_n),$$

for some $\xi^{(1,n)}, \dots, \xi^{(m,n)} \in \{0,1\}^{\mathbb{N}}$.

Passing, if necessary, to a subsequence, we can assume that

$$\lim_{n \to \infty} (\xi^{(1,n)}, \dots, \xi^{(m,n)}) = (\xi^{(1)}, \dots, \xi^{(m)}).$$

• For $A_1 \subseteq A_2 \subseteq \ldots$ any subsets of X

$$\lim_{n\to\infty}c(A_n)=c\left(\bigcup_{n=1}^{\infty}A_n\right).$$

Proof. Borel positive sets are thick.

Now let B be any Borel subset of X such that c(B) > 0. Hence

$$\mu_{\xi^{(1)},\ldots,\xi^{(n)}}(B\cap C(\xi^{(1)},\ldots,\xi^{(n)})) =$$

= $\nu_{\xi^{(1)},\ldots,\xi^{(n)}}(\pi_{X_n}(B\cap C(\xi^{(1)},\ldots,\xi^{(n)})) > 0,$

where

$$X_n = \prod_{k \notin \bigcup_{i \leq n} \Lambda_i} \{0, 1\}^{\mathbb{N}}.$$

for some $\xi^{(1)}, \ldots, \xi^{(n)} \in \{0,1\}^{\mathbb{N}}$ and $n \in \mathbb{N}$. We have

$$\nu_{\xi^{(1)},...,\xi^{(n)}} = \nu_{\xi^{(1)},...,\xi^{(n)}} \times \prod_{k \in \Lambda_{n+1}} \eta.$$

Proof. Borel positive sets are thick...

$$\mu_{\xi^{(1)},\ldots,\xi^{(n)},\xi}(B\cap C(\xi^{(1)},\ldots,\xi^{(n)},\xi))) =$$

$$= \int_{\prod_{k\in\Lambda_{n+1}}\{0,1\}^{\mathbb{N}}} \nu_{\xi^{(1)},\ldots,\xi^{(n)},\xi}(\pi_{X_{n+1}}(B\cap C(\xi^{(1)},\ldots,\xi^{(n)},\xi)))d\left(\prod_{k\in\Lambda_{n+1}}\eta\right)(\xi).$$

(1) ()

Thus the set of those $\xi\in\prod_{k\in\Lambda_{n+1}}\{0,1\}$ for which

$$u_{\xi^{(1)},...,\xi^{(n)},\xi}(\pi_{X_{n+1}}(B\cap C(\xi^{(1)},\ldots,\xi^{(n)},\xi))) > 0$$

has positive measure and hence also

$$c(B\cap C(\xi^{(1)},\ldots,\xi^{(n)},\xi))>0,$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

must have positive measure and thus it must have cardinality c.

Thank You for Your Attention!

<□ > < @ > < E > < E > E のQ @